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The problem of nonsteady heat exchange at the stagnation point of a stream is dis- 
cussed. Its solution, obtained in Laplace transforms, is represented in the form 
of a schematic diagram establishing the connection between the observed quanti- 
ties. 

A stream of liquid flows from infinity onto a semibounded body placed across the flow 
and flows out along the wall from the critical point (Fig. I). It is known that in the 
vicinity of the critical point the velocity components of the potential flow of an ideal 
fluid are U = bx and B =--by, where b is a constant. The temperature of the fluid is Tf,= 
while the wall te~aperature is Tb,=. It is assumed that the properties of the fluid and body 
do not depend on temperature. Energy dissipation in the fluid is ignored. The surface of 
the body is adiabatic. This allows us to assign different temperatures to the fluid and the 
wall. At some time, taken as t = O, the adiabaticity of the surface of the body is removed, 
and uniformly distributed heat sources having a specific power qs(t) start to operate at it. 
Here the hydrodynamics is steady-state as before. 

The solution of the hydrodynamic problem of determining the fluid velocity profile near 
the stagnation point is given by the following expressions (see [i, 2], for example): 

where the function f(n) satisfies the equation 

f '"  + / F  - r ~ + 1 = o, fl~=~ = I' i ._~ = o,  f ' l ~ . .  - ~  1 

I t  i s  known t h a t  f " ( O )  = 1 . 2 3 2 6 .  

A distinctive feature of the leading critical point is the fact that the boundary-layer 
variable n depends only on y, i.e., the thickness of the boundary layer does not vary along 
the surface. 

The mathematical formulation of the conjugate problem of heat exchange at the stagna- 
tion point of the stream is reduced to the energy equations in the fluid and the body with 
the corresponding boundary conditions: 
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Fig.  1. Schemat ic  diagram of  con juga te  problem of nons teady  
h e a t  exchange a t  a f r o n t  c r i t i c a l  p o i n t :  a) c o a r s e ;  b) f i n e  

Tf,~ [ T f - -Tb , |  ] V(~l, P) 
--F Q(P)-- -kV-p k~/-pIY~(O, p) '  structure; T-f (y. p)= P P 

e-- h lrff-z r b ~ [-- rf'| Y~<O, p) y~ 
P)= -~'- +[Q (P) + p k},'~-+ (o, p)" 

As seen from these equations, the solution of the thermal problem can be sought in the 
form of functions Tf = Tf(y, t) and T b = Tb(y, t) which do not depend on x. 

Let us choose the scales for making the energy equations in the fluid and the body di~ 
mensionless. We take the scale of length in the fluid, as in the boundary layer, as Lf = 
~7b, while in the body we take the scale L so that ~b/Lb = ~f/Lf. Hence, L b = (~b/~f)~-~o 
The time scale is the same for the fluid and the body, to = L~/af = Pr/b; af and a b are the 
thermal diffusivities of the fluid and the body. 

In the dimensionless quantities z = y/Lb (in the body), ~ = y/Lf (in the fluid), and T = 
t/to, theenergy equations in the fluid and the wall are written in the form (the OY axes in 
the body and the fluid are directed in opposite ways) 

O T f  _ cTZTf Pr f (q) OTf. , (1) 
0"~ Oq ~ O~ 

kz OTb _ OZTb 
aT Oz z (2) 
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with the boundary and initial conditions 

Tf l~.| Tf!~=o-= T f ,| Tb'z.=--+Tb,| Tbi~=o-- Tb, | (3) 

and the conjugation conditions at the surface of the body 

cTTf. I OTb I = Lf 
- -  O'q n=o Oz ,=o "~,f q,('0, Tf ln=o = Tblz= o. (4) 

Here k = (lbCbPb/Xfpfcf)*/a characterizes the ratio of activities of the body and the fluid. 

In view of the linearity of Eqs. (1)-(4), the solution of the thermal problem will be 
sought in the form 

~__ ~_'r( I ) ~_ ,.r,(2.) T f  T f . .  "4- T~-" +T~2 ,, r b = Tb, - i , .  b 7 - .  b , 

where the fields of temperatures Tf (~) Tb (~)- and T (a) T (2) are due to the differential of 
' f ' b 

the initial temperatures between the fluid and the wall (Tf, =- Tb =) and to the action of 
surface heat sources qs(t), respectively. 

Applying a Laplace transform with respect to the dimensionless time 

{'}'" b = . ( T  f ,  bexp (-- V0 d*, 
o 

we o b t a i n  (i = i ,  2) 

= ~'F +Prl(q),  dl] ' "f 'q" | -,~0, 
(5) 

(6) 

with the conjugation conditions 

d~') L o + d'/'('~l 
d. = ~ I,=o 

=o, ~"" -r Vr"--rb'" 
- - , f  I~=o b ~=o= P 

(7) 

= If ,~==0 = *b z=O an .=o dz I.=o (8) 

where u 

Q Co)- V T , i  `(~) exp (--p~)d~. 
o 

The solution of Eqs. (5)-(8) is written in the form 

~},, = Tf.. -- %.. k V~ r (,~, p), 
- p hV~+Y~(o, p) 

~,t~,) = Tf .| . Y~(0, p) exp(--kV'pz), 
p k V~, + Y~ (o, p) 

~(~ = Q (P) Y(,1, p), r kV~+v~ (o, p) 

~2) = q (P) exp ( - - k  V P  z). 
kV~+v~(o, p) 

Here we introduce the function Y(q, p), determined from the equation 

d2---~-- V + Pr [ 0]) dY dq 2 ~ = PY' Yl,l=o = 1, Y ]~-| "-~ O. 

It is important to note that only one parameter Pr enters into (11). 

(9) 

(io) 

(ii) 
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Fig. 2. Schematic diagram of the problem of conduc- 
tive heat exchange of two rods with different initial 
temperatures and with heat release at contact surface; 

- -  ] t~ . 'f= Tf.p __, [ ~ )  T.f.=--Tl~= l / _ ~  l/:_._~_b+ l /  ~,f pfc .~ . , 

Tb=7+[ ;/~" +rf'| }/'~'-bb~b-~V'~fcf-- 

! 

To clarify the physical meaning of Y~(O, p) we calculate the coefficient of heat ex- 
change in transforms, using Eqs. (9) and (i0): 

f (p)= t ~ z:f ( + I,=o ,=o = ~ -~E). = ~f- Y;,(o, p). 

Tf ,= T'f I.u= ~ --(T(~) + f 'y=o 
P 

Thus, Y~(0, p) is the dimensionless heat-exchange coefficient at the wall surface. 

Equations (9) and (I0), describing the temperature fields in the fluid and the body, 
are presented in Fig. 1 in the form of schematic diagrams which graphically show the connec- 
tion between the observed quantities. 

As seen from Fig. la, b the schematic diagram has the inputs Tf,=/p, Tb,~/p, (Tf, ~ -- 
Tb,~)/p, and Q(p). If Tf,~ = Tb,~, e.g., then there remains only one input, Q(p), and the 
schematic diagram gives the temperature distribution in the field and the body due to the ac- 
tion of the heat source. 

When Q(p) = 0 we have the solution of the thermal problem describin~ the equalization 
of the temperature of the fluid and the body. 
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It is interesting to note that the types of schematic diagrams for the conjugate prob- 
lem of convective heat exchange (Fig. la, b) and of conductive heat exchange of two rods 
(Fig. 2) are analogous. The only difference consists in the expressions for the transfer 
functions. 

The asymptotic behavior of the function Y(~, p) as p * 0 and p + = (T ~ = and T § 0, 
respectively) is investigated in detail in the Appendix. 

If p § ~([p[>> [t/=Pr f"(O)]=/'), Y~(O,p) ~ r and for n << 2[Pl/Pr f"(O) we have 
Y(q, p) = exp(-~pn).* 

Thus, the process of heat exchange is initially determined only by heat conduction and 
does not depend on the hydrodynamic characteristics of the flow. 

In dimensional form, at t + O, 

O(p) 
k V~+Y~(o,  ,) 

k v'p 
k V~+Y'~ (o, p) 

v'~(o, p) 
k V-p -+ Y'~ (o, p) 

$, ( , ' )  

- (VZ~%Cb + V ~,~pfcf )Vp' ' 

= (~PbCb~,/z+(~,fpfcf)'/= " 

(kfpf cO t ]2 

(~cO '/2 + (~epecf ) '/~ ' 

where p' is a dimensional quantity [i/sec]. 

As seen from these equations, as p + = the schematic diagram of the conjugate problem 
of convective heat exchange changes into the schematic diagram of the heat exchange of two 
semibounded rods with different initial temperatures and with heat release at the contact 
surface. 

If p § 0 then 

Y(,l, p),~ 

where F ('q) = 3 l (rl} an. 
0 

m 

j exp [--Pr F (rl)] drl 1 
, Y~ (o, p~ ~. - : 

J exp [--Pr F (n)] drl exp I--Pr F (rl)l an 
0 0 

In this case the thermal boundary layer is quasistationary, and the heat-exchange coef- 
ficient does not depend on p. As p * 0 the right side of the schematic diagram (for the wall) 
changes into the schematic diagram for the temperature field in a semibounded rod with a bound- 
ary condition of the third kind and heat release at the outer surface. 

As shown in the Appendix, at moderate Pr (i ~Pr << =) one can use the following approxi- 

mate equation for all p: o 

Yn(O, p l y - -  Prf"(O) a Ai' Pr 
? (o) . 

APPENDIX 

Let us investigate the asymptotic properties of the functions y(n, 
p ~ 0 (T ~ ~) and p ~ = (T ~ 0). 

i. p ~ 0. Expanding Y(~, p) in a series by powers of p 

Y(B, P) = Yo(n)+ Y t ( n ) P + . - -  

and substituting this series into (ii), we obtain 

! 

p) and Yn(O, p) as 

*The = sign denotes asymptotic equality. 
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Hence 

Yo" + Pr [Y; : 0, Vo I n=o = I, Yo In-,| ~ 0, 

Y~" --F Pr ]r = Yo, Y, [~=o = Y, In-| = 0. 

.(exp [--Pr F 01)1 drl n 
Yo (11) = '~ ,where F (rl) = S [ (r drl, 

rexp [--Pr F (rl)] drl o 
0 

ry , _ 
Yt 01) = .[ {j o (~) exp [Pr F (~)1 ~ i  exp[--Pr F (rUl dr I --{[1 Yo ('q)] S Yo (~)exp IPr F (~)1 a~} e• [--Pr F (~1)1 d'q. 

0 0 0 

From these equations we find 

Yo (0) = - -  ! , Y; (0) = | Y~ (rl) exp lPr F 01)I dTI. 
,~exp [--Pr F (TI)I drl o J 

0 

Thus,  as p § 0 we have 

v;, (o, p) = Y; (o) + Y; (o) p + . . . ,  
l 

where y~(0) > 0 and Y i(0) > O. The coefficients of this series depend only on Pr. 
term of (AI) corresponds to the quasistationary boundary layer. 
method of steepest descent for Pr ~ i, we have [3] 

where 

( m )  

The first 
Using a modification of the 

exp [--Pr F (rl)] di 1 "~ d . F  n__y__~l Pr 
3 

0 #I=0 

I 
d 2 - -  ) ' ' "  

8 (f" (o)p 7tk 1 ]87(o) 7q6) 
2. p + ~. The transformation 

Y(~, p ) =  q~011 p) exp [ - -  Pr F( t l ) ]  
L 2 J 

reduces Eq. (ii) to the form 

@" = - - I ' +  T P + P  ~, @i.=o= I. 

In order that Y(q, p) -~ 0 as q -~ = it is required that ~(n, p) -+ 0 as q -~ = also. 

As p -~ o~ (i § 0) 

(A2) 

(A3) 

the temperature field is localized near the wall surface, and in place 
of f'(q) and f(n) in Eq. (A3) we can take the first terms of their expansions as n -~ O: 

["  (0)) I  2 
/ '  (n) -= I" (o) q + o in2), / (q) - ~ o (n;) 

2 
Neglecting the quantity [Pr f"(o)lS]r," for moderate Pr (Pr << co), from (A3) we obtain 

4)" - -  Pr l"(O)~l+p r  ~j~=o 

The solution of this equation is written in the form 

= I, ~I,~.| O. 

[(+ ] Pr F f0) )I/3(H F 2p/Pr ~" (0}) 

where Ai is the Airy function. 

r m =  

Since f(O) = O, we have 

Ai 
1/3  [" 
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I , 2 

( T  ]l-~--Ai'Ai [(Pr 2(0) )-g-P] " r~ (0, p) = -- Pr r" (0) 

I t  is  i n t e r e s t i n g  to note tha t  by s e t t i ng  p = 0 in (A4) we obtain 

Y~(0)~- - (  l- Prf'(0)~ ~-~- \ 2  , Ai'Ai(0)(0) _ / . ,  l x ( 3  Prf"(O)6 )T. '  

�9 I T )  
This r e su l t  agrees weli  with the f i r s t  term of the expansion (~ . ) ,  according to which 

3 [Pr[~(0)),Is. v~(o)=(l%)x 6 

(A4) 

Thus, for moderate Pr (i S Pr << ~) Eq. (A4) can be used for all p. 

As p + = (IPl > [I/2pr f"(O)] 2/') we find Y~(O,p)- 4p, while for N << 21p[/Pr f"(O) we 
have Y(q, p) : exp(-- pq). These equations correspond to the case of pure heat conduction. 

1, 

2. 

. 

LITERATURE CITED 

H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968). 
L. G. Loitsyanskii, The Laminar Boundary Layer [in Russian], Gos. Izd. Fiz. Mekh. Lit., 
Moscow (1962). 
D. Meksyn, New Methods in Laminar Boundary-Layer Theory, Pergamon Press, New York (1961). 

HEAT PROPAGATION BY HEAT CONDUCTION IN ACTIVE LINEAR MEDIA 

L. S. Eleinikova UDC 536.2.O1 

A method to use the matrix A-parameter method [i] to solve linear heat-conduction 
problems in active media is proposed. 

The system of differential equations describing the temperature and heat flux distribu- 
tion in an inhomogeneous heat line (IHL) within which distributed heat and temperature sources 
act has the form [i] 

at _Rlq._i I aq Or = ~ + E, (1) 

Oq _ 0t 
Or gzt --  c - -  q- P. o~ (2) 

Equations (1)-(2) form asystem of so-called telegraph equations in which the effect of 
the internal distributed sources is taken into account. The case when the distributed tem- 
perature sources (E) and the distributed heat sources (P) are independent, i.e., are depen- 
dent on neither the temperature nor the heat flux, but at the same time can be given as func- 
tions of the coordinates or time, has been examined earlier [I]. It is shown there how a 
problem with given initial conditions reduces to a problem with independent heat sources. 
In this paper the case when the distributed sources of both E and P depend linearly on the 
temperature or on the heat flux (or on their time rate of change) is examined. 

Let us consider the following variants: 

la) E = Rl+q(r , ~) are the distributed temperature sources proportional to the heat flux; 

ib) E = ll+3q(r, T)/3T are the distributed temperature sources proportional to the time 
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